lunes, 21 de marzo de 2011

El hormigón

El hormigón, también denominado concreto en algunos países de Iberoamérica, es el material resultante de la mezcla de cemento (u otro conglomerante) con áridos (piedra, grava, gravilla y arena) y agua. La mezcla de cemento con arena y agua se denomina mortero.

El cemento, mezclado con agua, se convierte en una pasta moldeable con propiedades adherentes, que en pocas horas fragua y se endurece tornándose en un material de consistencia pétrea.


La principal característica estructural del hormigón, es que resiste muy bien a los esfuerzos de compresión, pero no tiene buen comportamiento frente a otros tipos de esfuerzos (tracción, flexión, cortante, etc.), por este motivo es habitual usarlo asociado al acero, recibiendo el nombre de hormigón armado.

Además, para poder modificar algunas de sus características o comportamiento, se pueden añadir aditivos y adiciones, existiendo una gran variedad de ellos: colorantes, aceleradores, retardadores de fraguado, fluidificantes, impermeabilizantes, fibras, etc.

Cuando se proyecta una estructura de hormigón armado se establecen las dimensiones de los elementos, el tipo de hormigón, los aditivos, y el acero que hay que colocar en función de los esfuerzos que deberá soportar y de las condiciones ambientales a las que estará expuesto.

Su empleo es habitual es obras de arquitectura e ingeniería, tales como edificios, puentes, diques, puertos, canales, túneles, etc. Incluso en aquellas edificaciones cuya estructura principal se realiza en acero, su utilización es imprescindible para conformar la cimentación.

Hormigón procede del término formicō, palabra latina que alude a la cualidad de "moldeable" o "dar forma". El término concreto también es originario del latín: concretus, que significa "crecer unidos" o "unir". Su uso en idioma español se transmite por vía de la cultura anglosajona, como anglicismo (o calco semántico), siendo la voz inglesa original: concrete.

La historia del hormigón constituye un capítulo fundamental de la historia de la construcción. Cuando el hombre optó por levantar edificaciones utilizando materiales arcillosos o pétreos, surgió la necesidad de obtener pastas o morteros que permitieran unir dichos mampuestos para poder conformar estructuras estables. Inicialmente se emplearon pastas elaboradas con arcilla, yeso o cal, pero se deterioraban rápidamente ante las inclemencias atmosféricas. Se idearon diversas soluciones, mezclando agua con rocas y minerales triturados, para conseguir pastas que no se desagrasen fácilmente. Así, en el Antiguo Egipto se utilizaron diversas pastas obtenidas con mezclas de yesos y calizas disueltas en agua, para poder unir sólidamente los sillares de piedra; como las que aún perduran entre los bloques calizos del revestimiento de la Gran Pirámide de Guiza.

En la Antigua Grecia, hacia el 500 a.C., se mezclaban compuestos de caliza calcinada con agua y arena, añadiendo piedras trituradas, tejas rotas o ladrillos, dando origen al primer hormigón de la historia, usando tobas volcánicas extraídas de la isla de Santorini. Los antiguos romanos emplearon tierras o cenizas volcánicas, conocidas también como puzolana, que contiene sílice y alúmina, que al combinarse químicamente con la cal daban como resultado el denominado cemento puzolánico (obtenido en Puzzuoli, cerca del Vesubio). Añadiendo en su masa jarras cerámicas o materiales de baja densidad (piedra pómez) obtuvieron el primer hormigón aligerado. Con este material se construyeron desde tuberías a instalaciones portuarias, cuyos restos aún perduran. Destacan construcciones como los diversos arcos del Coliseo romano, los nervios de la bóveda de la Basílica de Majencio, con luces de más de 25 metros, las bóvedas de las Termas de Caracalla, y la cúpula del Panteón de Agripa, de unos 43 metros de diámetro, la de mayor luz durante siglos.

Tras la caída del Imperio Romano el hormigón fue poco utilizado, posiblemente debido a la falta de medios técnicos y humanos, la mala calidad de la cocción de la cal, y la carencia o lejanía de tobas volcánicas; no se encuentran muestras de su uso en grandes obras hasta el siglo XIII, en que se vuelve a utilizar en los cimientos de la Catedral de Salisbury, o en la célebre Torre de Londres, en Inglaterra. Durante el Renacimiento su empleo fue escaso y muy poco significativo.

En algunas ciudades y grandes estructuras, construidas por Mayas y Aztecas en México o las de Machu Pichu en el Perú, se utilizaron materiales cementantes.

En el siglo XVIII se reaviva el afán por la investigación. John Smeaton, un ingeniero de Leeds fue comisionado para construir por tercera vez un faro en el acantilado de Edystone, en la costa Cornwall, empleando piedras unidas con un mortero de cal calcinada para conformar una construcción monolítica que soportara la constante acción de las olas y los húmedos vientos; fue concluido en 1759 y la cimentación aún perdura.

Joseph Aspdin y James Parker patentaron en 1824 el Portland Cement, obtenido de caliza arcillosa y carbón calcinados a alta temperatura -denominado así por su color gris verdoso oscuro, muy similar a la piedra de la isla de Portland. Isaac Johnson obtiene en 1845 el prototipo del cemento moderno elaborado de una mezcla de caliza y arcilla calcinada a alta temperatura, hasta la formación del clinker; el proceso de industrialización y la introducción de hornos rotatorios propiciaron su uso para gran variedad de aplicaciones, hacia finales del siglo XIX.

El hormigón, por sus características pétreas, soporta bien esfuerzos de compresión, pero se fisura con otros tipos de solicitaciones (flexión, tracción, torsión, cortante); la inclusión de varillas metálicas que soportan dichos esfuerzos propició optimizar sus características y su empleo generalizado en múltiples obras de ingeniería y arquitectura.

La invención del hormigón armado se suele atribuir al constructor William Wilkinson, quien solicitó en 1854 la patente de un sistema que incluía armaduras de hierro para "la mejora de la construcción de viviendas, almacenes y otros edificios resistentes al fuego". El francés Joseph Monier patentó varios métodos en la década de 1860, pero fue François Hennebique quien ideó un sistema convincente de hormigón armado, patentado en 1892, que utilizó en la construcción de una fábrica de hilados en Tourcoing, Lille, en 1895.

Hennebique y sus contemporáneos basaban el diseño de sus patentes en resultados experimentales, mediante pruebas de carga; los primeros aportes teóricos los realizan prestigiosos investigadores alemanes, tales como Wilhem Ritter, quien desarrolla en 1899 la teoría del "Reticulado de Ritter-Mörsch". Los estudios teóricos fundamentales se gestarán en el siglo XX.

A principios del siglo XX surge el rápido crecimiento de la industria del cemento, debido a varios factores: los experimentos de los químicos franceses Vicat y Le Chatelier y el alemán Michaélis, que logran producir cemento de calidad homogénea; la invención del horno rotatorio para calcinación y el molino tubular; y los métodos de transportar hormigón fresco ideados por Juergen Hinrich Magens que patenta entre 1903 y 1907. Con estos adelantos pudo elaborarse cemento Portland en grandes cantidades y utilizarse ventajosamente en la industria de la construcción.

Maillart proyecta en 1901 un puente en arco de 38 metros de luz sobre el río Inn, en Suiza, construidos con vigas cajón de hormigón armado; entre 1904 y 1906 diseña el puente de Tavanasa, sobre el río Rin, con 51 metros de luz, el mayor de Suiza. Claude A. P. Turner realiza en 1906 el edificio Bovex de Minneapolis (USA), con los primeros pilares fungiformes (de amplios capiteles).

Le Corbusier, en los años 1920, reclama en Vers une Architecture una producción lógica, funcional y constructiva, despojada de retóricas del pasado; en su diseño de Casa Domino, de 1914, la estructura está conformada con pilares y forjados de hormigón armado, posibilitando fachadas totalmente diáfanas y la libre distribución de los espacios interiores.

Los hangares de Orly (París), diseñados por Freyssinet entre 1921 y 1923, con 60 metros de luz, 9 de flecha y 300 de longitud, se construyen con láminas parabólicas de hormigón armado, eliminando la división funcional entre paredes y techo. En 1929 Frank Lloyd Wright construye el primer rascacielos en hormigón.

En la década de 1960 aparece el hormigón reforzado con fibras, incorporadas en el momento del amasado, dando al hormigón isotropía y aumentando sus cualidades a flexión, tracción, impacto, fisuración, etc. En los años 1970, los aditivos permiten obtener hormigones de alta resistencia, de 120 a más de 200 MPa; la incorporación de monómeros, genera hormigones casi inatacables por los agentes químicos o indestructibles por los ciclos hielo-deshielo, aportando múltiples mejoras en diversas propiedades del hormigón.

Los grandes progresos en el estudio científico del comportamiento del hormigón armado y los avances tecnológicos, posibilitaron la construcción de rascacielos más altos, puentes de mayor luz, amplias cubiertas e inmensas presas. Su empleo será insustituible en edificios públicos que deban albergar multitudes: estadios, teatros, cines, etc. Muchas naciones y ciudades competirán por erigir la edificación de mayor dimensión, o más bella, como símbolo de su progreso que, normalmente, estará construida en hormigón armado.

Los edificios más altos del mundo poseen estructuras de hormigón y acero, tales como las Torres Petronas; en Kuala Lumpur, Malasia (452 metros, 1988), el edificio en Taipei 101 en Taiwán (509 metros, 2004), o el Burj Dubai de la ciudad de Dubai (818 metros, 2009), en el siglo XXI.

El uso de materiales reciclados como ingredientes del hormigón está ganando popularidad debido a la cada vez más severa legislación medioambiental. Los más utilizados son las cenizas volantes, un subproducto de las centrales termoeléctricas alimentadas por carbón. Su impacto es significativo pues posibilitan la reducción de canteras y vertederos, ya que actúan como sustitutos del cemento, y reducen la cantidad necesaria para obtener un buen hormigón. Como la producción de cemento genera grandes volúmenes de dióxido de carbono, la tecnología de sustitución del cemento desempeña un importante papel en los esfuerzos para aminorar las emisiones de dióxido de carbono.

El hormigón es el material resultante de unir áridos con la pasta que se obtiene al añadir agua a un conglomerante. El conglomerante puede ser cualquiera, pero cuando nos referimos a hormigón, generalmente es un cemento artificial, y entre estos últimos, el más importante y habitual es el cemento Portland.

Los áridos proceden de la desintegración o trituración, natural o artificial de rocas y, según la naturaleza de las mismas, reciben el nombre de áridos silíceos, calizos, graníticos, etc. El árido cuyo tamaño es superior a 5 mm. se llama árido grueso o grava, mientras que el inferior a 5 mm. se llama árido fino o arena.

La pasta formada por cemento y agua es la que confiere al hormigón su fraguado y endurecimiento, mientras que el árido es un material inerte sin participación en el fraguado y endurecimiento.

El cemento se hidrata en contacto con el agua, iniciándose complejas reacciones químicas que lo convierten en un producto maleable con buenas propiedades adherentes, que en el transcurso de unas horas, derivan en el fraguado y endurecimiento progresivo de la mezcla, obteniéndose un material de consistencia pétrea.

Una característica importante del hormigón es poder adoptar formas distintas, a voluntad del proyectista. Al colocarse en obra es una masa plática que permite rellenar un molde, previamente construido con una forma establecida, que recibe el nombre de encofrado.

La principal característica estructural del hormigón es resistir muy bien los esfuerzos de compresión. Sin embargo, tanto su resistencia a tracción como al esfuerzo cortante son relativamente bajas, por lo cual se debe utilizar en situaciones donde las solicitaciones por tracción o cortante sean muy bajas.

Para superar este inconveniente, se "arma" el hormigón introduciendo barras de acero, conocido como hormigón armado o concreto reforzado, permitiendo soportar los esfuerzos cortantes y de tracción con las barras de acero. Es usual, demás, disponer de barras de acero reforzando zonas o elementos fundamentalmente comprimidos, como es el caso de los pilares. Los intentos de compensar las deficiencias del hormigón a tracción y cortante originaron el desarrollo de una nueva técnica constructiva a principios del siglo XX, la del hormigón armado.

Posteriormente se investigó la conveniencia de introducir tensiones en el acero de manera deliberada y previa al fraguado del hormigón de la pieza estructural, desarrollándose las técnicas del hormigón pretensado y el hormigón postensado.

Así, introduciendo antes del fraguado alambres de alta resistencia tensados en el hormigón, este queda comprimido al fraguar, con lo cual las tracciones que surgirían para resistir las acciones externas, se convierten en descompresiones de las partes previamente comprimidas, resultando muy ventajoso en muchos casos. Para el pretensado se utilizan aceros de muy alto límite elástico, dado que el fenómeno denominado fluencia lenta anularía las ventajas del pretensado.

Los aditivos permiten obtener hormigones de alta resistencia; la inclusión de monómeros y adiciones para hormigón aportan múltiples mejoras en las propiedades del hormigón.

Cuando se proyecta un elemento de hormigón armado se establecen las dimensiones, el tipo de hormigón, la cantidad, calidad, aditivos, adiciones y disposición del acero que hay que aportar en función los esfuerzos que deberá resistir cada elemento.

Un diseño racional, la adecuada dosificación, mezcla, colocación, consolidación, acabado y curado, hacen del hormigón un material idóneo para ser utilizado en construcción, por ser resistente, durable, incombustible, casi impermeable, y requerir escaso mantenimiento. Como puede ser moldeado fácilmente en amplia variedad de formas y adquirir variadas texturas y colores, se utiliza en multitud de aplicaciones.

La pasta del hormigón se forma mezclando cemento artificial y agua debiendo embeber totalmente a los áridos. La principal cualidad de esta pasta es que fragua y endurece progresivamente, tanto al aire como bajo el agua.

El proceso de fraguado y endurecimiento es el resultado de reacciones químicas de hidratación entre los componentes del cemento. La fase inicial de hidratación se llama fraguado y se caracteriza por el paso de la pasta del estado fluido al estado sólido. Esto se observa de forma sencilla por simple presión con un dedo sobre la superficie del hormigón. Posteriormente continúan las reacciones de hidratación alcanzando a todos los constituyentes del cemento que provocan el endurecimiento de la masa y que se caracteriza por un progresivo desarrollo de resistencias mecánicas.

El fraguado y endurecimiento no son más que dos estados separados convencionalmente; en realidad solo hay un único proceso de hidratación continuo.

En el cemento Portland, el más frecuente empleado en los hormigones, el primer componente en reaccionar es el aluminio tricálcico con una duración rápida y corta (hasta 7-28 días). Después el silicato tricálcico, con una aportación inicial importante y continua durante bastante tiempo. A continuación el silicato bicálcico con una aportación inicial débil y muy importante a partir de los 28 días.

El fenómeno físico de endurecimiento no tiene fases definidas. El cemento está en polvo y sus partículas o granos se hidratan progresivamente, inicialmente por contacto del agua con la superficie de los granos, formándose algunos compuestos cristalinos y una gran parte de compuestos microcristalinos asimilables a coloides que forman un película en la superficie del grano. A partir de entonces el endurecimiento continúa dominado por estas estructuras coloidales que envuelven los granos del cemento y a través de las cuales progresa la hidratación hasta el núcleo del grano.

El hecho de que pueda regularse la velocidad con la que el cemento amasado pierde su fluidez y se endurece, lo hace un producto muy útil en construcción. Una reacción rápida de hidratación y endurecimiento dificultaría su transporte y una cómoda puesta en obra rellenando todos los huecos en los encofrados. Una reacción lenta aplazaría de forma importante el desarrollo de resistencias mecánicas. En las fábricas de cemento se consigue controlando la cantidad de yeso que se añade al clinker de cemento. En la planta de hormigón, donde se mezcla la pasta de cemento y agua con los áridos, también se pueden añadir productos que regulan el tiempo de fraguado.

En condiciones normales un hormigón portland normal comienza a fraguar entre 30 y 45 minutos después de que ha quedado en reposo en los moldes y termina el fraguado transcurridas sobre 10 o 12 horas. Después comienza el endurecimiento que lleva un ritmo rápido en los primeros días hasta llegar al primer mes, para después aumentar más lentamente hasta llegar al año donde prácticamente se estabiliza.

Se define en la Instrucción española EHE, la durabilidad del hormigón como la capacidad para comportarse satisfactoriamente frente a las acciones físicas y químicas agresivas a lo largo de la vida útil de la estructura protegiendo también las armaduras y elementos metálicos embebidos en su interior.

Por tanto no solo hay que considerar los efectos provocados por las cargas y solicitaciones, sino también las condiciones físicas y químicas a las que se expone. Por ello se considera el tipo de ambiente en que se va a encontrar la estructura y que puede afectar a la corrosión de las armaduras, ambientes químicos agresivos, zonas afectadas por ciclos de hielo-deshielo, etc.

Para garantizar la durabilidad del hormigón y la protección de las armaduras frente a la corrosión es importante realizar un hormigón con una permeabilidad reducida, realizando una mezcla con una relación agua/cemento baja, una compactación idónea, un peso en cemento adecuado y la hidratación suficiente de éste añadiendo agua de curado para completarlo. De esta forma se consigue que haya los menos poros posibles y una red capilar interna poco comunicada y así se reducen los ataques al hormigón.

En los casos de existencia de sulfatos en el terreno o de agua de mar se deben emplear cementos especiales. Para prevenir la corrosión de armaduras hay que cuidar el recubrimiento mínimo de las mismas.

Tipos de hormigón:

. Hormigón ordinario: También se suele referir a él denominándolo simplemente hormigón. Es el material obtenido al mezclar cemento Portland, agua y áridos de varios tamaños, superiores e inferiores a 5 mm., es decir, con grava y arena.

. Hormigón en masa: Es el hormigón que no contiene en su interior armaduras de acero. Este hormigón solo es apto para resisitir esfuerzos de compresión.

. Hormigón armado: Es el hormigón que en su interior tiene armaduras de acero, debidamente calculadas y situadas. Este hormigón es apto para resistir esfuerzos de compresión y tracción. Los esfuerzos de tracción los resisten las armaduras de acero. Es el hormigón más habitual.

. Hormigón pretensado: Es el hormigón que tiene en su interior una armadura de acero especial sometida a tracción. Puede ser pre-tensado si la armadura se ha tensado antes de colocar el hormigón fresco o post-tensado si la armadura se tensa cuando el hormigón ha adquirido su resistencia.

. Mortero: Es una mezcla de cemento, agua y arena (árido fino), es decir, un hormigón normal sin árido grueso.

. Hormigón ciclópeo: Es el hormigón que tiene embebidos en su interior grandes piedras de dimensión no inferior a 30 cm.

. Hormigón sin finos: Es aquel que solo tiene árido grueso, es decir, no tiene arena (árido menor de 5 mm.).

. Hormigón aireado o celular: Se obtiene incorporando a la mezcla aire u otros gases derivados de reacciones químicas, resultando un hormigón de baja densidad.

. Hormigón de alta densidad: Fabricados con áridos de densidades superiores a los habituales (normalmente barita, magnetita, hematita...). El hormigón pesado se utiliza para blindar estructuras y proteger frente a la radiación.

No hay comentarios:

Publicar un comentario